报告一:Examples of twice differentiable functions with continuous Laplacian and unbounded Hessian
报告时间:5月14日-16日15:30-17:30 地点: 1-423
摘要:We construct examples of twice differentiable functions in R^n with continuous Laplacian and unbounded Hessian. The same construction is also applicable to higher order differentiability.
报告二:Counterexamples for Calderón-Zygmand estimates via holomorphic function in C^n
报告时间:5月22日-24日15:30-17:30 地点: 1-423
摘要:The Calderón-Zygmand theory says that for Δu=f, if f belongs to L^p then u belongs to W^{2, p}. It is well known that the case of p=1 fails. We show that for any holomorphic function, we construct an example showing the theory fails when . This provided abundant examples than the classical one.
报告三:The local regularity of Beurling operator in complex plane
报告时间:6月4日-6日15:30-17:30 地点:1-423
摘要:Let B(z) be the Beurling operator that is defined on L^p. We show that B(z) preserves smoothness of locally.
报告人介绍:潘一飞,美国印第安纳普渡大学教授,博士生导师;从事多复变、复分析和偏微分方程等领域的研究工作,在Duke. Math、Tran. Amer. Math. Soc.、Ann. Fac. Sci. Toulouse Math.等期刊发表学术论文60余篇。
中国·浙江 湖州市二环东路759号(313000) 版权所有:51吃瓜黑料网